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In an earlier paper [1), a model was formulated for computing the

optimal stock quantity of an item to be held by a retailer when resupply

from a wholesaler is possible but uncertain. The distinguishing feature

of the model is that it takes into account the cost of resupply and the

probability of stock being received by the retailer in time for issue to

customers. The model generalized an earlier inventory model [2] in which

no resupply is possible, which in turn was a more general formalization

of the classic newsboy problem (see pp. 31-32 [3]). Since the model

includes as parameters the cost of transportation and the probability of

receiving material on time, it can be utilized to infer which of several

modes of transport is preferred for a given item.

The model described above assumed an infinite amount of stock is

available for shipment to the retailer and that the wholesaler incurs

no cost for holding stock. Furthermore, it assumed that the wholesaler

knows if a shipment to a retailer will arrive on time for sale to a
i

customer, qnd if the shipment would arrive late it is not sent at all.

Conversely, shipments are always made when it known they will arrive on time.

'The particular context for the model is a retailer who sells customized
units which are desired during a short, specific period of time and if
delivery cannot be made on time the customer obtains the units elsewhere.
Hence a late shipment has the same outcome as no shipment, namely, a lost
sale.
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In the two models to be discussed in this paper, the assumlption of

infinite stock and no holding cost at the wholesale level is relaxed.

Instead it is assumed that W units of stock are available in the inven-

tory system, of which T units are stocked at the retail level and the

remaining (W-T) units are kept at a positive holding cost at the wholesale

level. As in the earlier paper, we first develop a model in which it is

assumed that the wholesaler ships requested units when it is knowin that

the shipment will arrive on time. Under this assumption it is found that

our earlier result (where an infinite amount of stock is kept at zero

holding cost by the wholesaler) is a limiting case of the one considered

here. We then develop a second model where it is assumed that the whole-

saler always ships requested units, but only T percent of the shipments

to the retailer will arrive on time.

As might be expected, in most instances the decision rule to ship

requested material only if it is known that the retailer will receive it

on time results in the same or lower total expected loss than the one where

material in short supply is always shipped. Even so, since the marginal

cost of determining if units will arrive on time is positive, the decision

rule of the second model, i.e., to always ship, may be the preferred one.

While the marginal cost of obtaining information is not considered in our

models, were such information available it could provide a means for

deciding which items are best resupplied using a push system of resupply

and which items one may want to exercise more stringent transportation

control so as to reduce the overall cost of operating an inventory system.

As will be seen below, it appears that for most items the push system is

more economical for a wide range of parameter values.

1. The Inventory System

Consider an inventory system consisting of a wholesaler and retailer

and that for each item there are W units of stock (varying with each

different item) of which T are placed with the retailer; the remaining

A (W-T) units are kept by the wholesaler. Our problem is to find the

optimal value of T given W

-2-
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In this inventory system, customers are assumed to demand various

quantities x from the retailer, these quantities forming the probability

distribution P(x) where E P(x) 1 . If x < T , the demanded units

are met from shelf stocks. If x exceeds T , an order for the needed

units is sent to the wholesaler.

We begin by specifying a mode of transportation for shipping units

between the wholesaler and retailer, the cost of shipping units by that

mode of transport, and the relative frequency with which shipments made to

the retailer arrive on time. The stockout cost to the retailer for units
not delivered on time and the holding costs to the retailer and wholesaler

are also specified.

In particular, let

C = the unit cost of shipping additional units to the retailer

by the selected mode of transportation,

HI - the relative frequency with which shipments made to the*

retailer by the given mode of transportation arrive on

time,

D r= the retailer's loss per unit of stock in short supply,

H r=the retailer's cost of maintaining a unit of unused stock,

and

H w=the wholesaler's cost of maintaining a unit of unused stock.

We assume H < H so that we can write
w r

H - aH where 0<ca,< 1J w r-

In calculating the optimal retail stock level T for an item,

( we consider two cases. First, the wholesaler ships the units in short

V supply only if it is known that the shipment will arrive on time, i.e.,

shipments are made only HI percent of the time. Second, the wholesaler

always ships the units in short supply, but shipments arrive on time

only Rl percent of the time. These two cases are discussed below.

-3-
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2. Model I: Resupply Only When Units Will Arrive on Time

For the case where T units are stocked by the retailer and (W-T)

units by the wholesaler, and resupply is made only when it is known that

the units will arrive on time at the retailer, the total expected loss is

T T
L(T/W) = H E (T-x) P(x) + aH (W-T) E P(x)

r xO

W W
+ ff (C E (x-T) P(x) + cfH E (W-x) P(x))

xT+1  r x=T+l

W W
+ (1-H) (Dr E (x-T) P(x) + aM (W-T) P(x))

x-T+l r x=T+l

+ D T (x-W) P(x) . (1)r x=W+l

The first and second terms in (1) are the retailer's and wholesaler's

expected loss, respectively, from holding too many units of stock when the

demand quantity is less than or equal to T . The third term is the expected

cost of transporting additionally required units which are sent the H

percent of the time it is known units will be received on time by the

retailer. The fifth term is the expected loss when units ordered by the

retailer are not sent the (1-H) percent of the time they would arrive

late (and as a result they are ordered elsewhere by customers). The fourth

and sixth terms are the wholesaler's expected loss from holding too many

units of stock when the demand quantity is greater than T units but less

than or equal to W units. In the H percent of the time that the whole-

saler does ship additional units, he is left with the remaining W-x units.

In the (1-H) percent of the time that he does not ship, he is left with

all(W-T-l) units. The last term in (1) in the expected loss to the retailer

when the demand quantity is in excess of W units and, therefore, this

excess cannot be resupplied.

4
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If (T+l) units are stocked by the retailer and (W-T-1) units

by the wholesaler, the total expected loss is

T+l T+l
L(T+l/W) = H r E (T+l-x)P(x) + UH r(W-T-l) Zi P(x)

w 14
+ fl(C E (x-T-1) P(x) + otH r (W-x)P(x))

x=T+2 rx=T+2

14 1
+ (1-fl) (D r (x-T-l)P(x) + aH r(W-T-l) E P(x))

rx-T+2 rx=T+2

+ D rZ Cx-W)P(x)) (2)
rx=W+l

Hence

T T
L(T+l/W) - L(T/W) - H r Z P(x) - cH r P(x) + aXH r(W-T-1,'P(T+l)

+ TIC-C I P(x) - ctH (W-T-1jP(T+l))
x=T+l r

w w
+ (1-fl) (-D Zi P(x) - cdl E P(x) - (xH (W--1)P(T+l))

r r1 r
=TlXT+1

T 14 1
=H r(1-.a) Z P(x) - CHt Z P(x) -(1-fl) (D r+cH r) Et P(x)

r x0O x-T+1 r rx-T+l

= H r(1-a)F(T) - Cfl(F(W) - F(T)) -(1-fl)(D r cLH r)(F(W)-F(T))

= (H r(1--a) + CHl + (1-fl)(D r ctH r))F(T)

-(CHt + (1-fl) (D r+aH ))F(W),(3

where T
F(T) =iE P(x)

-5-
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and

W
F(W) P(x)

x=O

The optimal value of T is the first value of T such that

(r(Cr+(-)(Dr4uHr))F(W)
H (1--a) + CH + (l-R)(D +a) (4)
rr r

Notice that if the amount of stock in the system is infinite and

there is no cost of holding this stock at the wholesale level, F(W) =

l and cx = 0 in which case the optimal value of T is the first value

for which

F(T) > C+ (I-)D r

Hr+C]T+ (1-H)D r

i.e., the result obtained in [1]. If in addition to a = 0 and

F(W) = 1 , 1 = 0 so that no additional units can reach the retailer on

time, the optimal value of T is the first value for which

D
F(T) > r

- H +Dr r

which is the solution to the newsboy problem.

3. Model II: Resupply Regardless of Arrival Time

The second decision rule regarding resupply considered in this

paper is that of always resupplying additionally requested units

independent of their arrival time at the retail level. In this case we

assume that while a shipment is always made, it arrives on time at the

retail level only R percent of the time.

-6-



Under these circumstances,

T T
L(T/W) =H r (T-x)P(x) + cxH r(W-T) XJ P(x)

r= x0O

w w
+ C z (x-T)P(x) + aH r (W-x)P(x)

x=T+l rx=T+l

+ (l-fl)D r (x-T)P(x) + D r (x-W)P(x) .(5)

r T+l r=~

Comparison of (1) and (5) indicates that the third, fourth, and fifth

terms of the former are omitted and two new terms are added, namely,

w
C E (x-T)P(x) which is the expected cost of shipping additionally

x=T+l

w
requested units to the retailer and UH rX (W-x)P(x) which is the

rx=T+l

expected loss associated with keeping the remaining W-x units.

If (T+l) units are stocked by the retailer and (W-T-l) units

by the wholesaler, the total expected loss is

T+l T+l
L(T+l/W) H E (T+l-x) P(x) + ofH (W-T-l) Z P(x)rr x

w w
+ C x zT+2 (x-T-l) + cd-r Z (W-x)P(x)

rx=T+2

+ (1-fl) D E (x-T-l) P(x) + D Z (x-14) P~x W (6)
r T2r

x=T+ x=W+l

-7-W
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TT

L(T+I/W) - L(T/W) = r ), P(x) - xll rX P(x) + (xH (W-T-l)P(T+l)rx= r= r
X=O X0O

W W
- C E P(x) - QH (W-T-I)P(T+l) - (l-E)D Z P(x)

x=T+l T~x+l

= H (l-cx)F(T) - (C+(i-)D )(F(W) - F(T))

r r

= (Hr (1-) + C + (l-T)Dr)F(T) - (C+(I-H)Dr)F(W) (7)

The optimal value of T is the first value such that

(C+(l-R)D )F(W) (8)
- H (1-a) + C+(l-H)D

r r

As can be seen by comparing (4) and (8), all other things being

equal, when H = 1 the optimal value of T is the same for both models,

since additionally requested units will always arrive on time and are

always shipped or, alternatively, they are always shipped and always

arrive on time.

4. The Special Case of Insurance Items

In many instances, particularly in military inventory systems,

it is desirable to stock a single unit in the system eventhough it

is not likely to be demanded over a long period of time. Applying

Model I to this situation, i.e., where W = 1

L(T/W) = L(Ol) - iHr P(O) + (r[C+(l-l) (Dr + OHr )) P(l)r r

and L(T+I/W) = L(1/1) = H rP(O)

so that L(1/l) - L(O/l) = (1-a) H rP(O) - (TC + (1-H) (D r+aH )) P(l)

-8
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For the Poisson distribution with mean . , P(O) = and P(l) =>P(O);

thus

L(1/1) -L(0/1) [ [r -rIC + (1-f) (Dr+ AH r )

When L(1/1) - L(O/1) > 0 , the single unit in the system should

be kept at the wholesale level. Conversely, L(1/1) - L(0/1) < 0

implies that the unit should be placed at the retail level.

Where the transportation system is reliable in the sense that

material is delivered in a timely fashion, we can assume in the limiting

case that n = 1 . For Model I, this yields the result that

H r (l-C)
L(l/l) - L(O/1) -0 if A > r

<> C

lvncu material would tend to be itockeu at the wholesaler, everything else

constant, when X is small as is the case for insurance items. The same

result is also obtained for Model II when n = 1 . It should be noted,

however, that even for small values of X there may be combinations of

a , H , and C for which it is more economical to hold an insurance% r
item at the retail level.

5. A Comparison of the Optimal Retail Stock Level T and
the Total Expected Loss Under the Two Alternative Decision

Rules Regarding Resupply

The models developed in sections 2 and 3 permit a comparison of

the optimal retail stock level T and the corresponding total expected

loss when orders placed with the wholesaler are filled only when it is

certain that the additionally requested units will arrive on time versus

always being filled. To illustrate the differences between the two models,

we compute in Table 1 the optimal value of T for arbitrary values of

each variable. In computing the figures in this table, we again assume

for simplicity that the distribution of demanded units is Poisson with

mean A . To further simplify the table we assume that the holding cost

-9-
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Table 1

Optimal Retail Stock Level T for Selected

Values of the Model Parameters a

Model I Model II

H =5 H =50 H =5 H =50r r r r
f1=.10 Rl=.95 Rl=.10 Hl=.95 HI=.10 Hl=.95 Hl=.10 Hl=.95

W= 1, X =.05

D =5,C=5 0 0 0 0 0 0 0 0r
D = 5, C=250 0 1 0 0 1 1 0 0r
D r= 100, C=5 1 0 0 0 1 0 0 0

r

W =10, X 1.00

D =5, c=5 1 1 0 0 1 1 0 0

D = 5, C=250 2 4 1 2 4 4 2 2
r
D r= 100, C=5 3 1 1 0 3 1 1 0

D r= 100, C=250 3 4 1 2 4 4 2 2

r

D = 5, C=501 1 1 1 1 1 1 1
r

D r= 100',C=5 1 1 1 1 1 1 1 1

D = 100, C=250 1 1 1 1 1 1 1 1r

W =10, A=10.00

D =5,C=5 8 8 6 5 9 8 6 5

D r=5, C=250 10 10 8 10 10 10 10 10

D = 100, C=5 10 9 9 6 10 9 9 6
r
D r=100,C-250 10 10 9 10 10 10 10 10

W =20, X=10.00

D =5,C=J 10 10 7 6 11 10 7 6
r
D =,C5014 17 9 13 17 17 13 13

D 0,C516 11 11 7 16 11 117

DIO10, C250 16 17 12 13 17 17 14 13

a u-.10 in all examples. X is the mean of a Poisson distribution of demands.

The definition of each of the other variables is given in the text.

- ii. 10-
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for the wholesaler is substantially less than for the retailer as indicated

by our choice of (A , i.e., c' = 10 . Four classes of items are considered

having the combination of low (high) shortage cost and low (high) transport

cost. Additionally, we consider cases where the amount of system stock

W is less than, equal to, and greater than mean demand X

Referring to Table 1 it is seen that the optimal value of T is

positively related to X , D r, and W but is inversely related to C

and H r* Some interaction effects should also be noted. For example,

for Model I

(a) a low shortage cost item which is costly to ship and
would rarely arrive on time is stocked at the whole-
sale level (see Row 2, Col. 1);

(b) a low shortage cost item which is costly to ship and
would almost always arrive on time (were it kept by
the wholesaler) may be stocked at the retail level
(see Row 2, Cal. 2) since almost always shipping the
item increases the total expected loss;2

(c) a high shortage cost item which is unlikely to arrive
on time may be kept at the retail level when the
shipping cost is low as well as when it is high (see
Rows 3 and 4, Col. 1, respectively) because absence
of the item can result in loss of customers.

(d) However; if the high shortage cost item in (c) will
almost always arrive on time, some additional unitsii can be kept at the wholesaler, the number of addi-
tional units stocked there being larger, the lower
the transport cost (compare Row 2, Cols. 1 and 2
with Row 3, Cols. 1 and 2).

Perhaps the most interesting feature of Table 1 relates not to

the behavior of Model I or Model II considered by itself, but to the

fact that with few exceptions the optimal retail stock levels are

2 From (a) and (b) it is seen that the optimal value of T may
increase as iU increases (see pp. 33-34, [1]).



T-452

3
similar for both over a large range of values. In an unconstrained

push system costs are incurred which would be avoided if discretionary

controls were utilized. Optimization reduces such costs in push systems

like Model II by prepositioning some stock at the retail level. Yet in

most instances the optimal value of T in Model II is the same or differs

by only one or two units from its more sophisticated counterpart. There

are several reasons for this. First, the optimal value of T depends in

Models I and II, respectively, on the ratio

t H_CH + (1-1)(D r + aHr))F(W)Hl = r(1-a) + C11 + (1-H)(D r + LH r ) ()

and

C + (1-1)Dr)F(W) (10)

2 H r (1-a) + C + (I-H)Dr  *

As indicated in Table 2 the values of t1  and t2 are similar for most

parameter values. Second, since P(x) is a discrete function the same

optimal T may be obtained even where t1  and t2 are different.

Additionally where W is small, at most only a small number of units can

be stocked at the tender.

That the two models yield similar results despite the very

different decision rules underlying each can also be ascertained from

Table 3 where the total expected loss is shown corresponding to the

optimal value of T in Table 1. In particular it is noticed that the

total expected loss is the same for both models when T = W . In this

case substituting T for W in (1) and (5) yields

L(T=W/W) = H r (W-x)P(x) + D Z (x-W)P(x)r x0r x
x-O x=14+1

While not shown, this was also found to be true of values of
a other than .10

- 12 -
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Table 2 T-452

Values of ta for Selected Values of the Model Parameter3b

Model I Model II

H =5 H =50 H =5 H =50r r r r

H=.10 T=.95 10=.I0 II=.95 I=.10 11=.9 H=.10 .1=.95

W = 1, X = .05

D = 5, C=5 0.5471 0.5269 0.1741 0.1044 0.6778 0.5378 0.1741 0.±044r

D = 5, C=250 0.8683 0.9802 0.4299 0.8400 0.9814 0.9811 0.8487 0.8466
r
D = 100, C=5 0.9517 0.6839 0.6778 0.1816 0.9536 0.6888 0.6778 0.1816r

D = 100, C=250 0.9613 0.9806 ;7256 0.8426 0.9857 0.9815 0.8820 0.8490r

w = 10, X = 1.00

D = 5, C=5 0.5477 0.5276 0.1743 0.1045 0.6786 0.5385 0.1743 0.1045
r
D = 5, C=250 0.8694 0.9814 0.4304 0.8410 0.9826 0.9823 0.8498 0.8476

r
D = 100, C=5 0.9529 0.6848 0.6786 0.1818 0.9548 0.6897 0.6786 0.1818r

D = 100, C=250 0.9625 0.9818 0.7264 0.8436 0.9869 0.98L7 0.8831 0.8500r

W = 1, X = 10.00

D = 5, C=5 0.0003 0.0003 0.0009 0.0005 0.0003 0.0003 0.0009 0.0005
r
D = 5, C=250 0.0004 0.0005 0.0002 0.0004 0.0005 0.0065 0.0004 0.0004r

D = 100. C=5 0.0005 0.0003 0.0003 0.0009 0.0005 0.0003 0.0003 0.0009
r
D = 100, C=250 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005 0.0004 0.0004r

W = 10, A = 10.00

D = 5, C=5 0.3194 0.3076 0.1016 0.0609 0.3956 0.3139 0.1016 0.0609
r
D = 5, C=250 0.5069 0.5722 0.2509 0.4903 0.5729 0.5727 0.4954 0.4942r
D = 100, C=5 0.5556 0.3992 0.3956 0.1060 0.5567 0.4021 0.3956 0.1060

r

D = 100, C=250 0.5612 0.5724 0.4235 0.4919 0.5754 0.5729 0.5149 0.4956
r

W = 20, X = 10.00

D = 5, C-5 0.5469 0.5267 0.1740 0.1043 0.6775 0.5376 0.1740 0.1043

D = 5, C=250 0.8680 0.9799 0.4297 0.8397 0.9811 0.98C8 0.8484 0.8462
r

D r= 100, C=f5 0.9513 0.6837 0.6775 0.1815 0.9533 0.6886 0.6775 0.1815

D = 100, C-250 0.9610 0.9802 0.7253 0.8423 0.9854 0.9811 0.8817 0.8486r

aFor Model I, t is given by Equation (9); for Model II, it is given by Equation (10).

bSee footnote a, Table 1.
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Table 3

The Total Expected Loss for Selected Values of the

Model Parametersa

Model I Model II

H =5 H =50 H =5 H =50

11=.10 llf=.95 RI=.10 Rl=.95 T=.lO ]I=.93 HI=.10 7=.95

W 1, X = .05

r 5, C=5 0.74 0.72 5.21 5.01 0.93 0.73 5.21 5.01

D = 5, C=250 1.91 4.76 6.38 16.09 4.76 4.76 16.88 16.67

D r= 100, C=5 4.88 1.06 9.40 5.35 4.88 1.07 9.40 5.35

r

W =10, X = 1.00

D = 5, C=5 8.16 8.00 50.00 45.75 9.65 8.09 45.95 45.53

D = 5, C=250 12.57 19.04 74.06 119.32 19.11 19.10 121.03 120.59
r

r 100, C=5 15.72 9.75 96.50 46.23 15.82 9.83 96.50 46.00

r 100, C-250 16.30 19.06 105.52 119.81 19.48 19.12 129.89 121.08

w= 1, A =10

Dr = 5, C=5 34.46 34.46 34.46 34.46 34.46 34.46 34.46 34.46

Dr 5, C=250 34.46 34.46 34.46 34.46 34.46 34.46 34.46 34.46

r 10 = 8.2 692 8.2 692 8.2 692 8.2692

D 100, C=5 689.22 689.22 689.22 689.22 689.22 689.22 689.22 689.22

W = 10, A = 10.00

D = 5, C=5 11.00 10.84 29.05 23.40 11.64 10.92 29.30 23.40
r
D = 5, C=250 12.51 12.51 45.99 68.81 12.51 12.51 68.81 68.81
r
D r= 100, C=5 131.37 130.53 178.95 148.75 131.37 130.56 178.95 148.77

D = 100, C-250 131.37 131.37 182.01 187.67 131.37 131.37 187.67 187.67
r

W = 20, A - 10.00

Dr 5, C=5 17.36 16.84 92.21 76.42 21.03 17.12 95.14 76.42

r 5, C=250 29.09 39.24 139.49 272.99 39.43 39.38 278.08 276.77

Dr =100, C-s 36.67 21.52 210.45 96.88 36.86 21.73 210.45 97.04

D r 100, C-250 37.79 39.56 257.41 274.72 40.65 39.7,) 298.07 278.50

a See footnote a, Table 1.
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Thus when retailer and system stock are synonymous, the total expected

loss is the same as would be calculated in the newsboy problem and is

independent of R , C , and (x . Comparing the total expected losses

for each model, everything else constant, it is found that, as before,

the two models yield similar results in most instances.

Based on the findings of this section, we conclude that Models I

and II yield substantially the same outcomes and unless the marginal cost

of obtaining information for the former is trivial, the push system

embodied in the latter is preferable. This may account, in part,for the

prevalence of such systems.

6. Summary

The two models presented in this paper provide a simple algorithm

for determining the optimal quantity of an item to be stocked at the

retail level given such factors as the item's shortage cost, holding costs

at the retail and wholesale levels, the cost of shipping material, the

probability of stock being received on time for issue to customers, and

the amount of stock in the supply system. Thus the context of these models

is much broader than that of the newsboy problem in which only the shortage

cost and retailer's holding cost are considered.

Besides providing a vehicle for computing the optimal retail stock

level when system stock is given, the models provide a basis for deciding

whether to ship units in short supply to a retailer using a diszretionary

control, namely, whether the units will arrive on time, or to always

ship units even though they may arrive late. While the inventory system

modeled consists of only one retailer and one wholesaler, it nevertheless

affords a means of analytically evaluating an aspect of inventory policy

which otherwise could only be addressed using more complex techniques.

For the very elementary inventory system examined in this paper it

appears, based on the parameter values we used, that a push system

is more economical than one utilizing the discretionary control of shipping

shortfall units only if they will arrive on time at the retailer.

- 15 -
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It should be recognized that in our calculation of the optimal

stock quantity T at the retail level, it is assumed that W units

of stock are available in the inventory system. The problem we address

is how to distribute these W units between the two echelons of supply.

The more complex case of how to optimally determine W and T is not

examined. One way of treating this latter problem is to determine a

maximum value of W , say W , such that the probability of demand

exceeding W is arbitrarily small, and then to choose that combination

of T and W (O<W<W) for which the total expected loss is a minimum.

Other approaches may also be possible but ':; .-.yond the scope of this

paper. Still another problem left for f Yt -r- search is the extension

of the models to a more complex inventr( y containing more than

one retailer.

1

- 16 -



T-452

REFERENCES

(11 HABER, SHELDON E. and ROSEDITH SITGREAVES (1980). An optimal

inventory model where resupply is possible but uncertain,

Journal of Operations Management, 1 31-36.

[2] DENICOFF, M., J. FENNELL, S. E. HABER, W. H. MARLOW, and HENRY

SOLOMON (1964). A Polaris logistics model, Naval Research

Logistics Quarterly, 11 259-272.

[31 MORSE, P.M. and G. E. KIMBALL (1951). Methods of Operations

Research, John Wiley and Sons, New York.

- 17 -



THE GEORGE WASHINGTON UNIVERSITY

Program in Logistics

Distribution List for Technical Papers

The George Washington University Armed Forces Industrial College Case Wk-stern Reserv, University

Office of Sponsored Research Prof B. V. Dean
Gelman Library Armed Forces Staff College Prof M. Mesarovic

Vice President H. F. Bright
Dean Harold Liebowltz Army War College Library Cornell Univ.rsity

Dean Henry Solomon Carlisle Barracks Prof R. E. Bechhofer

Prof R. W. Conway

ONR Army Cmd & Gen Staff College Prof Andrew Schultz, Jr.

Chief of Naval Research
(Codes 200, 434) Army Logistics Mgt Center Cowles Foundation for Research

Resident Representative Fort Lee in Ecomonics

Prof Martin Shubik
OPNAV Commanding Officer, USALDSRA

OP-40 New Cumberland Army Depot Florida State University

DCNO, Logistics Prof R. A. Bradley
Navy Dept Library Army Inventory Res Ofc
NAVDATA Automation Cmd Philadelphia Harvard University

Prof W. C. Cochran
Naval Aviation Integrated Log Support Army Trans Material Cmd Prof Vrthur Schleifer, Jr.

TCMAC-ASDT
NARDAC Tech Library Princeton University

Air Force Headquarters Prof A. W. Tucker

Naval Electronics Lab Library AFADS-3 Prof J. W. Tukey
LEXY Prof Geoffrey S. Watson

Naval Facilities Eng Cod Tech Library SAF/ALG

Purdue University
Naval Ordnance Station Griffiss Air Force Base Prof S. S. Gupta

Louisville, Ky. Reliability Analysis Center Prof H. Rubin

Indian Head, Md. Prof Andrew Whinston
Gunter Air Force Base

Naval Ordnance Sys Cmd Library AFLMC/XR Stanford University
Prof T. W. Anderson

Naval Research Branch Office Maxwell Air Force Base Library Prof Kenneth Ariow

Boston Prof G. B. Dantzig

Chicago Wright-Patterson Air Force Base Prof F. S. Hillier
New York AFLC/OA Prof D. L. Iglehart

Pasadena Research Sch Log Prof Samuel Karlin

San Francisco AFALD/XR Prof G. J. Lieberman

Prof Herbert Solomon
Naval Ship Eng Center Defense Technical Info Center Prof H.rbe Slm

PhildelhiaPa.Prof A. F. Veinott, Jr.Philadelphia, Pa.

National Academy of Sciences University of California, Berkeley

Naval Ship Res & Dev Center Maritime Transportation Res Bd Lib Prof R. FE. Barlow

Prof D. Gale
Naval Sea Systems Command National Bureau of Standards Prof Jack Kiefer

PMS 30611 Dr B. H. Colvin
Tech Library Dr Joan Rosenblatt University of California, Los Angeles

Code 073 Prof R. R. O'Neill
National Science Foundation

Naval Supply Systems Command University of North Carolina

Library National Security Agency Prof W. L. Smith
Operations and Inventory Analysis Prof M. R. Leadbetter

Weapons Systems Evaluation GroupPrf. .Lahte

Naval War College Library University of Pennsylvania
Newport British Navy Staff Prof Russell Ackoff

BUPERS Tech Library National Defense Hdqtrs, Ottawa

Logitics Tec Analsisasta University of TexasLogistics, OR Analysis Estab Institute for Computing Science
FMSO Aecand Computer ApplicationsI American Power Jet Co

USN Ammo Depot Earle George Chernowitz Yale University

Prof F. .1. Anscombe
USN Postgrad School Monterey General Dynamics, Pomona Prof II. Scarf

Library

Dr Jack R. Borsting General Research Corp Prof Z. W. Blrnbaum
Prof C. R. Jones Library University of Washington

US Coast Guard Academy Logistics Management Institute Prof B. H. Bissinger

Capt Jimmie D. Woods Dr Murray A. l;eisler The Pennsylvania State University

US Marine Corps Rand Corporation Prof Seth Bonder

Commandant Library University of Michigan

Deputy Chief of Staff, R&D Mr William P. Hutzler

Prof G. E. Box
Marine Corps School Quantico Carnegie-Mellon University University of Wisconsin

Landing Force Dev Ctr Dean II. A. Simon

Logistics Officer Prof G. Thompson Or Jerome Bracken

Institute for Defense Analyses

Continued



Prof A. Charnes Prof W. Kruskal Prof A. H. Rubenstein

University of Texas University of Chicago Northwestern University

Prof H. Chernoff Mr S. Kumar Prof Thomas L. Saaty

Mass Institute of Technology University of Madras University of Pittsburgh

Prof Arthur Cohen Prof C. E. Lemke Dr M. E. Salveson

Rutgers - The State University Rensselaer Polytech Institute West Los Angeles

Mr Wallace M. Cohen Prof Loynes Prof Gary Scudder

US General Accounting Office University of Sheffield, England University of Minnesota

Prof C. Derman Prof Tom Maul Prof Edward A. Silver

Columbia University Kowloon, Hong Kong University of Waterloo, Canada

Prof Masao Fukushima Prof Steven Nahmias Prof Rosedith Sitgreaves

Kyoto University University of Santa Clara Washington, DC

Prof Saul I. Gass Prof D. B. Owen LTC G. L. Slyman, MSC

University of Maryland Southern Methodist University Department of the Army

Dr Donald P. Gaver Prof P. R. Parathasarathy Prof M. J. Sobel

Carmel, California Indian Institute of Technology Georgia Inst of Technology

Prof Amrit L. Goel Prof E. Parzen Prof R. M. Thrall

Syracuse University Texas A & H University Rice University

Prof J. F. Hannan Prof H. 0. Posten Dr S. Vajda

Michigan State University University of Connecticut University of Sussex, England

Prof H. 0. Hartley Prof R. Remage, Jr. Prof T. M. Whitin

Texas A & M Foundation University of Delaware Wesleyan University

Prof W. M. Hirsch Prof Hans Riedwyl Prof Jacob Wolfowitz

Courant Institute University of Berne University of South Florida

Dr Alan J. Hoffman Mr David Rosenblatt Prof Max A. Wuodbury

IBM, Yorktown Heights Washington, D. C. Duke University

Prof John R. Isbell Prof M. Rosenblatt Prof S. Zacks

SUNY, Amherst University of California, San Diego SUNY, Binghamton

Dr J. L. Jain Prof Alan J. Rowe Dr Israel Zang

University of Delhi University of Southern California Tel-Aviv University

Prof J. H. K. Kao
Polytech Institute of New York

February 1981

i-



I


